Effects of novel spermine analogues on cell cycle progression and apoptosis in MALME-3M human melanoma cells.

نویسندگان

  • D L Kramer
  • M Fogel-Petrovic
  • P Diegelman
  • J M Cooley
  • R J Bernacki
  • J S McManis
  • R J Bergeron
  • C W Porter
چکیده

On the basis of encouraging preclinical findings, polyamine analogues have emerged as a novel class of experimental antitumor agents. The spermine derivative N1,N11-diethylnorspermine (DE-333, also known as DENSPM) is currently undergoing Phase I clinical trials against solid tumors. A series of systematically modified DE-333 analogues differing in intra-amine carbon distances and in N-alkyl terminal substituents (i.e., methyl, ethyl, and propyl) were evaluated in MALME-3M human melanoma cells, a cell line known to be cytotoxically affected by DE-333 and especially responsive to analogue induction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase. Analogues accumulated to comparable intracellular concentrations and similarly affected cell growth with IC50 values in the 0.5-1.0 microM range. During prolonged incubations, diethyl and dipropyl analogues were cytotoxic, whereas two dimethyl analogues were cytostatic. Cell cycle analysis following treatment with the cytotoxic analogues revealed a prominent G1 block apparent as an accumulation of cells in G0/G1 and depletion of S-phase cells as well as a less restrictive G2 block. By contrast, cytostatic analogues incompletely arrested cells in G1, leaving a significant number of S-phase cells. Morphological and immunocytochemical analysis of detached cells revealed a far greater proportion of apoptotic cells with cytotoxic analogues than with cytostatic analogues. Although spermidine/spermine N1-acetyltransferase activity was differentially induced by the analogues, there was no obvious correlation with cell cycle effects. Overall, these data indicate a previously unrecognized combined effect of polyamine analogues on cell cycle progression and apoptosis. On the basis of structure-function relationships, these activities may be manipulated to optimize therapeutic efficacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyamine Analogue Induction of the p53-p21-Rb Pathway and G1 Arrest in Human Melanoma Cells

Although polyamines are well recognized for their critical involvement in cell growth, the cell cycle specificity of this requirement has not yet been characterized with respect to the newly delineated regulatory pathways. We recently reported that polyamine analogues having close structural and functional similarities to the natural polyamines produce a distinct G1 and G2-M cell cycle arrest i...

متن کامل

Analogue-treated Human Melanoma Cells Determining Cellular Outcomes in Polyamine The Role of Mitogen-activated Protein Kinase Activation in

The clinically relevant polyamine analogue N,N-diethylnorspermine (DENSPM) inhibits cell growth by down-regulating polyamine biosynthesis, up-regulating polyamine catabolism at the level of spermidine/spermine N-acetyltransferase (SSAT), and depleting intracellular polyamine pools. Among human melanoma cell lines, the analogue causes rapid apoptosis in SK-MEL-28 cells and a sharp G1 arrest in M...

متن کامل

Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome p...

متن کامل

Polyamine Depletion in Human Melanoma Cells Leads to G1 Arrest Associated with Induction of p21, Changes in the Expression of p21-regulated Genes, and a Senescence-like Phenotype

The cell cycle regulatory events that interface with polyamine requirements for cell growth have not yet been clearly identified. Here we use specific inhibitors of polyamine biosynthetic enzymes to investigate the effect of polyamine pool depletion on cell cycle regulation. Treatment of MALME-3M cells with either the ornithine decarboxylase inhibitor difluoromethylornithine or the S-adenosylme...

متن کامل

Antitumor activity of N,N'-bis(ethyl)spermine homologues against human MALME-3 melanoma xenografts.

The spermine analogues, N1,N12-bis(ethyl)spermine (BESPM), N1,N11-bis(ethyl)norspermine (BENSPM), and N1,N14-bis(ethyl)-homospermine (BEHSPM) behave similarly in down-regulating the key polyamine biosynthetic enzymes, ornithine and S-adenosylmethionine decarboxylase, but differ distinctly in their abilities to induce the polyamine catabolic enzyme, spermidine/spermine-N1-acetyltransferase; BENS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 57 24  شماره 

صفحات  -

تاریخ انتشار 1997